【数学】文字の式の「除法」について学びたいあなたはこちらをどうぞ【入門・基礎問題・ 中1・文字と式17】

スポンサーリンク
スポンサーリンク
スポンサーリンク

 

今回は、文字の式の「除法」について、

解説と問題動画を作成しました。

 

 

まず最初に、除法を学ぶときには、以下のことを意識しておきましょう!

 

文字と式の「加減」と、これから学ぶ「除法」は

 

計算ルールが違う

 

なので、ごっちゃにしないように気をつけてましょう

 

 

というわけで、

 

今回は、文字の式の「除法」の計算についてまとめました。

 

スポンサーリンク
スポンサーリンク

文字の式の「除法」の計算について学びたいあなたはこちらをどうぞ

 

こちらの例をやってみます。

(例)7a ÷ 2

 

 

この式の形は、

(文字の式)÷(数字)

となっています。

 

 

また、文字の式は、7a という

1つの項からできています。

 

 

え?「項(こう)」ってなに?

 

というあなたは、こちらで復習するといいですよ↓

 

 

話をもとに戻しますね。

 

こういう形の文字の式の除法は、

①、数字同士の除法をする
②、その後ろに文字を書く

とすればオッケーです。

 

[mathjax]

実際やってみると、

7a ÷ 2

 

= (7÷2)a

(数字だけの割り算を考えます。うしろに文字を書きます)

 

= \( \frac{7}{2} \)a

(数字のわり算はしないで、分数の形で書けばオッケーです)

となります。

 

 

 

 

もう1つ例をみてみましょう。

(例)(2a+5)÷ 3

 

 

この式は、

(文字の式)÷ (数字)

の形になっています。

 

 

上の例との違いは、文字の式が

2つの項(こう)になっている

ことです。(2つの項は、2a と 5です)

 

 

ここで思い出してほしいのが、

分配法則(ぶんぱいほうそく)

です。

 

 

まずは、「数字だけの分配法則」を思い出してみましょう。

(2+5)÷ 3

の計算を考えます。

 

この式は、

(数字)÷(数字)

の形をしています。

 

 

また、前の(数字)には、

2つの項があります(2と5)。

 

 

こういう形のときには、下のように分配法則で計算することができます。

☆分配法則☆

 

2項ある数字÷数字

 

=(数字の1項目÷数字)+(数字の2項目÷数字

 

具体的には、以下のように計算できます。

÷
÷ ÷

 

 

 

文字のある式のときを考えてみましょう。

 

たとえば、

(2a+5)÷ 3

のような計算です。

 

 

この式は、

(2項ある文字式)÷(数字)

という形をしています。

 

 

この形では、数字の分配法則と同じように、分配法則が使えます。

 

 

☆分配法則(文字の式・わり算バージョン)☆

 

2項ある文字式÷数字

 

=(文字式の1項目÷数字)+(文字式の2項目÷数字

 

 

ぐたいてきに計算してみますね。

2a÷
2a ÷ +   ÷
=  \( \frac{2}{3}a + \frac{5}{3} \)

と計算できます。

 

 

文字の式の除法も、(数字の除法と同じように)分配法則が成り立つわけです。

 

 

というわけで、文字を含んだ式の除法は、

数字同士のわり算をしたり、
分配法則を使って計算できます。

 

 

というわけで、練習問題を用意したので、理解の確認をしてみましょう

【問題】文字の式の「除法」の練習

[1], (1項の文字式)と(数字)の除法

次の計算をしてください。

(1),  5 ÷ (3x)

 

(2),  5 ÷ 3x

 

(3),  -2a ÷ 4

 

(4),  3x ÷ \(\frac{y}{4} \)

 

(5),  2a ÷ (-\(\frac{5}{6}\)b)

 

解説は ⇒ こちら

[2], (2項の文字式)と(数字)の除法

次の計算をしてください。

(1),  (x + 6) ÷ 3

 

(2),  x + 6 ÷ 3

 

(3),  (a - 2b) ÷(-4)

 

(4),  (3m + 2n) ÷ (-\(\frac{3}{2}\))

 

解説は ⇒ こちら

 

今回のまとめ

今回は、文字の式の「除法」の計算について解説しました

 

 

文字を含んだ式の除法は、

数字同士の計算をすること
分配法則を使うこと

で計算することがわかりました。

 

 

というわけで、本記事では、文字の式の「除法」の計算について、

問題動画とともに解説しました。

 

問題解答はこちらです↓

[1], 解答

(1),  \( \frac{5}{3x} \) (\( \frac{5x}{3} \) や \( \frac{5}{3}x \) は間違い)

 

(2),  \( \frac{5}{3}x\) または \( \frac{5x}{3}\)

 

(3),  -\( \frac{1}{2}a \) または -\( \frac{a}{2} \)

 

(4),  \( \frac{12}{y}x \) または \( \frac{12x}{y} \)

 

(5),  - \( \frac{12}{5b}a \) または - \( \frac{12a}{5b} \)

 

解説は ⇒ こちら

 

 

 

[2], 解答

(1),  \( \frac{x}{3} + 2\)

 

(2),  x + 2

 

(3),   \(-\frac{1}{4}a + \frac{1}{2}b \) または \(-\frac{a}{4} + \frac{b}{2} \)

 

(4),   \( -\frac{9}{2}m - 3n) \) または \( -\frac{9m}{2} - 3n) \)

解説は ⇒ こちら

 

★「文字と式」の記事はこちらにまとめてあります↓

「文字と式」を学びたいあなたはこちらをどうぞ【問題まとめ】

 

数学おじさん
数学おじさん

今日のお話はこれくらいにするかのぉ

秘書ザピエル
秘書ザピエル

あ、先生!告知をさせてください

数学おじさん
数学おじさん

おーそうじゃった

秘書ザピエル
秘書ザピエル

実はいろんなお悩みを聞いているんです

質問くまさん
質問くまさん

勉強しなきゃって思ってるのに、思ったようにできないクマ

シャンシャン
シャンシャン

わからない問題があると、やる気なくしちゃう

ハッチくん
ハッチくん

1人で勉強してると、行きずまっちゃうブー

 

数学おじさん
数学おじさん

誰しもそんな経験があると思います。

 

実は、そんなあなたが

 

勉強が継続できる

 

成績アップ、志望校合格できる

 

勉強を楽しめるようになる

 

ためのペースメーカーをやっています。

 

あなたの勉強のお手伝いをしますってことです。

 

具体的にはザピエルくんに説明してもらうかのぉ

 

ザピエルくんお願い!

秘書ザピエル
秘書ザピエル

はい先生!

 

ペースメーカーというのは、

もしもあなたが、

  • やる気が続かない
  • 励ましてほしい
  • 勉強を教えてほしい

なら、私たちが、あなたのために、

 

一緒に勉強する(丸つけや解説する)ことをやりながら、

 

あなたの勉強をサポートするという仕組みです。

  • やる気を継続したい
  • 成績をアップさせたい
  • 楽しく勉強したい

といったあなたに特にオススメです。

 

できるだけ楽しみながら勉強できるように工夫しています。

 

ご興味のあるあなたは、詳しことはこちらにありますので、よかったらどうぞ↓

 

【中学生 高校生 社会人】勉強のペースメーカーはいかがでしょう【受験 入試 資格試験】

 

不明な点があったら、お気軽にお問い合わせください

 

数学おじさん
数学おじさん

というわけで、ザピエルくん、あとはお願い!

秘書ザピエル
秘書ザピエル

はーい、先生!   数学おじさん、秘書のザピエルです。

 

ここまで読んでくださった方、ありがとうございました!

 

申し込みやお問い合わせは、随時うけていますので、

 

Twitter のリプライや、ダイレクトメールでどうぞ☆

ツイッターは ⇒ こちら

 

 

よかったら、Youtube のチャンネル登録もお願いします☆

Youtube チャンネルは ⇒ こちら
登録してもらえると、とても 励みになります
ってだれがハゲやねん!

 

数学にゃんこ
数学にゃんこ

 

数学にゃんこ
数学にゃんこ
「高校数学」を学びたいあなたにオススメの本はこちらニャン   『「高校数学」を独学したいあなたにおすすめの参考書や本はこちらです(教科書理解編)

 

数学にゃんこ
数学にゃんこ

 

数学にゃんこ
数学にゃんこ
「勉強法」についての記事はこちらニャン↓   『勉強法についての記事の一覧(まとめ)はこちらをどうぞ

 

コメント

error: Content is protected !!
タイトルとURLをコピーしました