今回は、文字を使った式の「乗除」の計算をやっていきます。
文字を含んだ乗除では、
- 乗法の3つのルール
- 累乗のルール
- 除法のルール
のそれぞれのルールを、使っていけばオッケーです。
でも複雑な式になってくると、
あれ?
となるのが普通なので、練習問題を解きながら慣れていきましょう。
最初はゆっくりでいいので、1つずつ確実にできるようにするといいですよ♪
また、気をつけたい2つのポイントもありますので、それもまとめたいと思います。
というわけで、今回は、文字を含んだ式の「乗除」の計算についてまとめます。
文字を使った式の「乗除」を学びたいあなたはこちらをどうぞ
[mathjax]
\( A × 5 ÷ B \)
をやってみます。
乗法のルールから、かけ算は省略できました。
\( A × 5 ÷ B = A5 ÷ B \)
乗法のルールから、文字と数字のかけ算は、数字が先でした。
\( A5 ÷ B = 5A ÷ B \)
除法のルールから、わり算は分数の形にできました。
わられる数は分子、わる数は分母でした。
\( 5A ÷ B = \frac{5A}{B} \)
となります。
これ以上は計算できないので、ここでストップとなります。
最初は1つずつでいいですが、慣れてきたら、
\( A × 5 ÷ B = \frac{5A}{B} \)
とサクッとできるように練習しましょう♪
文字を含んだ式の乗除で、気をつけたい2つのポイントとは?
\( A ÷ 5 × B \) を考えてみます。
正負の数と同じように、まずは、左側のわり算から先に計算します。
わられる数はAで、わる数は5なので、わり算のルールから、
\( A ÷ 5 × B = \frac{A}{5}×B \)
と書くことができます。
これにかけ算のルールを使って、
\( \frac{A}{5}×B = \frac{AB}{5}\)
とすることができます。
次は、\( A ÷ (5 × B) \) を考えてみます。
この式は( )の中から先に計算します。
かけ算のルールから、
\( A ÷ (5 × B) = A ÷ (5B) \)
となります。
次に残ったわり算をします。
わられる数はAで、わる数は (5B) なので、わり算のルールから、
\( A ÷ (5B) = \frac{A}{5B} \)
となります。
上の例と比べると、違っていることが分かります。
このように、わり算のルールを使うときには、
①、割られる数と、わる数をシッカリ確認する
というのが大事になります。
また、(5 × B) のように、( )が含まれるときは、
②、( )を1つの文字のように考える
というのもポイントになります。
というわけで、練習問題を用意したので、チャレンジしてみてください↓
【問題】文字を使った式の乗除①
(通信制限など気になる方は、1番下に解答があります)
【問題】文字を使った式の乗除②
(通信制限など気になる方は、1番下に解答があります)
今回のまとめ
今回は「文字を使った式の乗除」について解説しました。
文字を使った式の乗除では、
- 乗法と除法のルールをキッチリつかうこと
- 除法では、わられる数やわる数シッカリ確認すること
- ( )があるときは、( )を1つの文字のように考える
というのがポイントでした。
というわけで、本記事では「文字を使った式の乗除」の計算ルールについて、問題動画とともに解説しました。
問題解答はこちらです↓
\(【問題】追加予定 \)
★「文字と式」の記事はこちらにまとめてあります↓

今日の話はこれくらいにするかのぉ

あ、先生!告知をさせてください

おーそうじゃった

実はいろんなお悩みを聞いているんです

勉強しなきゃって思ってるのに、思ったようにできないクマ

わからない問題があると、やる気なくしちゃう

1人で勉強してると、行きずまっちゃうブーン

誰しもそんな経験があると思います。
実は、そんなあなたが
勉強が継続できる
成績アップ、志望校合格できる
勉強を楽しめるようになる
ためのペースメーカーをやっています。
あなたの勉強のお手伝いをしますってことです。
具体的にはザピエルくんに説明してもらうかのぉ
ザピエルくんお願い!

はい先生!
ペースメーカーというのは、
もしもあなたが、
- やる気が続かない
- 励ましてほしい
- 勉強を教えてほしい
なら、私たちが、あなたのために、
一緒に勉強する(丸つけや解説する)ことをやりながら、
あなたの勉強をサポートするという仕組みです。
- やる気を継続したい
- 成績をアップさせたい
- 楽しく勉強したい
といったあなたに特にオススメです。
できるだけ楽しみながら勉強できるように工夫しています。
ご興味のあるあなたは、詳しことはこちらにありますので、よかったらどうぞ↓
「【中学生 高校生 社会人】勉強のペースメーカーはいかがでしょう【受験 入試 資格試験】」
不明な点があったら、お気軽にお問い合わせください

というわけで、ザピエルくん、あとはお願い!


「中学数学」を学んだりやり直しならこちらの本がおすすめだにゃん
『【数学】中学数学を独学したい、やり直したいあなたにおすすめの参考書や問題集はこちらです【中学数学 高校数学 数学検定】』



コメント